Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37368580

RESUMO

Exposure to air pollution is one of the greatest environmental risks for human health. Air pollution level is significantly driven by anthropogenic emissions and meteorological conditions. To protect people from air pollutants, China has implemented clean air actions to reduce anthropogenic emissions, which has led to rapid improvement in air quality over China. Here, we evaluated the impact of anthropogenic emissions and meteorological conditions on trends in air pollutants in a coastal city (Lianyungang) in eastern China from 2015 to 2022 based on a random forest model. The annual mean concentration of observed air pollutants, including fine particles, inhalable particles, sulfur dioxide, nitrogen dioxide, and carbon monoxide, presented significant decreasing trends during 2015-2022, with dominant contributions (55-75%) by anthropogenic emission reduction. An increasing trend in ozone was observed with an important contribution (28%) by anthropogenic emissions. The impact of meteorological conditions on air pollution showed significant seasonality. For instance, the negative impact on aerosol pollution occurred during cold months, while the positive impact was in warm months. Health-risk-based air quality decreased by approximately 40% in 8 years, for which anthropogenic emission made a major contribution (93%).

2.
Huan Jing Ke Xue ; 43(4): 1738-1746, 2022 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-35393797

RESUMO

Nitrated phenols are a group of nitrogen-containing organics ubiquitously present in ambient air, which are also important components of atmospheric light-absorbing organic matter (brown carbon) that have significant impacts on climate change, air quality, and human health. In this study, we collected a total of 265 daily filter samples of fine particles (PM2.5) in northern suburban Nanjing from March 2019 to January 2020. We used ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) to detect and quantify eight nitrated phenolic species. The results showed that the average annual concentration of total nitrated phenols in the sampling site was 18.77 ng·m-3, and the average concentrations in spring, summer, autumn, and winter were 16.82, 8.59, 17.28, and 44.79 ng·m-3, respectively. Such concentrations were obviously higher than those determined in other countries but were similar to those in domestic cities, such as Jinan. 4-Nitrophenol was the most abundant nitrated phenol, followed by 4-nitrocatechol and 2-methoxy-5-nitrophenol. Correlation analysis showed that 3-nitrosalicylic acid was from a specific source different from that of other species. Finally, we used a positive matrix factorization model to quantify the source contributions of nitrated phenols. The major sources were vehicle emissions (32%), mixed coal and biomass burning emissions (44%), and industrial emissions (24%). The mixed coal and biomass burning emissions were dominant in autumn and winter. The mass fraction of 3-nitrosalicylic acid in the factor of industrial emissions was>90%, consistent with the results of the correlation analysis. Overall, this study provides valuable insights into the understanding of concentrations, characteristics, and sources of atmospheric nitrated phenols in ambient air.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Humanos , Nitratos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Fenóis/análise , Estações do Ano , Emissões de Veículos/análise
3.
Environ Res ; 212(Pt B): 113255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35430278

RESUMO

Functionalized aromatic compounds are one of the most important light-absorbing organic chromophores - so-called brown carbon (BrC) - in fine particulate matter (PM2.5). In this study, we conducted a wintertime field campaign to measure eight nitrated aromatic compounds (NACs) in PM2.5 with offline analysis techniques, including liquid chromatograph mass spectrometer (LC-MS) and aerodyne high-resolution aerosol mass spectrometer (AMS) measurements, during foggy and nonfoggy days in suburban Nanjing in the Yangtze River Delta region, China. On average, 4-nitrophenol could be one of the most important light absorbing materials in the observed BrC, which accounted for over 40% of the mass concentration of identified chromophores. The mass concentration of 2-methyl-4-nitrophenol and 2,6-dimethyl-4-nitrophenol were evidently increased during foggy days, contribution of which to total NACs were increased by 10% and 5%, respectively. Positive matrix factorization analysis of combining LC-MS and AMS dataset was performed to identify the primary and secondary sources of NACs. Primary sources, e.g., traffic and solid-fuel combustion, accounted for 71% of the sum of 4-nitrophenol, 2,6-dimethyl-4-nitrophenol and 3-nitrosalicylic acid, suggesting important contribution of primary emissions to these NACs. The contribution of secondary sources, associated with two oxygenated organic aerosols, could contribute 66% to 4-nitrophenol, reflecting the link of such nitrated aromatic compounds to secondary organic aerosol source. Together with optical measurements, 4-nitrophenol presented a high contribution (>50%) to the identified BrC absorbance in the light range 250 and 550 nm was observed. This could highlight an important role of such NACs in ambient BrC light absorption, despite its mass contribution to total organic carbon was negligible. Our work could improve the understanding of the links between optical properties and chemical composition of BrC, and the difference between BrC chromophores from nonfoggy days and foggy days under the typical polluted atmospheric conditions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Nitrocompostos/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...